

Overflow and safety valves

Overflow valve female/female BSP threaded FKM inlet nozzle - 3 pressure ranges

Model **58995** 0.5 - 2.5 bar

Model **58997** 2 - 12 bar

Model **58998** 12 - 20 bar

Specifications

Dimensions: DN10 to DN50 (3/8" to 2") **Connections:** BSP female threading in

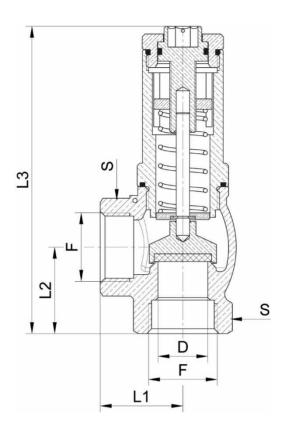
accordance with ISO 228-I

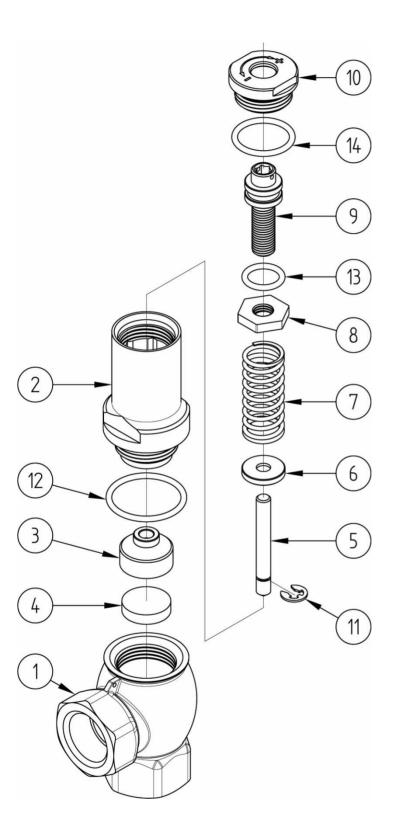
Pressure: 3 pressure ranges

Temperature: from - 20°C to +200°C

Material: Bronze CC499K - Brass CW617N -

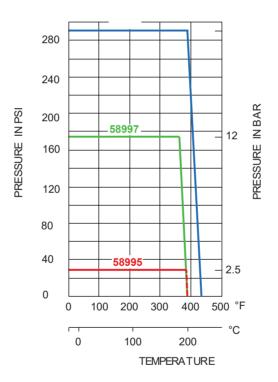
FKM inlet nozzle


(for the parts in contact with the fluid)



DN	NB	D	F	L1	L2	L3	S	Weight	Part number	Part	Part	
(mm)	(inches)	(mm)	(inches)	(mm)	(mm)	(mm)	(mm)	(kg)	0.5 - 2.5 bar	number 2 - 12 bar	number 12 - 20 bar	
10	3/8"	10	3/8"	27	26	86	24	0.30	158995-10	158997-10	158998-10	
15	1/2"	13	1/2"	30	30	99	28	0.40	158995-15	158997-15	158998-15	
20	3/4"	19	3/4"	33	35	121	34	0.70	158995-20	158997-20	158998-20	
25	1"	25	1"	40	41	142	41	1.20	158995-25	158997-25	158998-25	
32	1"1/4	30	1"1/4	45	45	163	52	1.90	158995-32	158997-32	158998-32	
40	1"1/2	38	1"1/2	50	51	190	58	2.50	158995-40	158997-40	158998-40	
50	2"	50	2"	60	60	209	70	3.80	158995-50	158997-50	158998-50	

N°	Part Name	Material
1	LOWER BODY	BRONZE
2	UPPER BODY (BONNET)	BRASS
3	CHECK VALVE SUPPORT	BRASS
4	CHECK VALVE SEAT	FKM / PTFE (58998)
5	SHAFT	BRASS
6	SPRING SUPPORT	BRASS
7	SPRING	1.4310 STAINLESS STEEL
8	LOCKNUT	BRASS
9	SET PRESSURE ADJUSTMENT SCREW	BRASS
10	CAP	BRASS
11	RETAINING RING	1.4310 STAINLESS STEEL
12	GASKET (BODY)	FKM
13	GASKET (SHAFT)	FKM
14	GASKET (CAP)	FKM


Use

This valve is not a safety valve and does not fall within category IV of the European Pressure Equipment Directive (PED) 2014/68/EU (formerly 97/23/EC). So it must not be used as a safety or protective element, it can only be used as a regulation element.

Pressure and temperature

For pressure/temperature ratings, see the graph below.

Warning: For usage temperatures above 60°C there is a risk of burns.

Fluids

This overflow valve is suitable for non-abrasive and non-coagulable fluids, subject to the chemical compatibility of the parts in contact.

Béné Inox - II chemin de la Pierre Blanche - 69800 SAINT PRIEST - S.A.S with 240 000 € share capital - SIREN N° 311 810 287 Tel. N°: +33 (0)4 78 90 48 22 – Fax N°: +33 (0)4 78 90 69 59 – www.bene-inox.com – bene@bene-inox.com – bene-inox.com – <a hre

Assembly and maintenance instructions

Installation

The overflow valve must be mounted vertically with the spring cap facing upwards.

Ensure that the intended location is sufficiently clear from obstructions for the valve to be able to open and overflow to take place correctly.

Make sure that the piping is perfectly aligned and its support structure sufficiently dimensioned so that the overflow valve is not subject to any external stresses. The support structure must support the pipes, not the overflow valve.

Flush the installation before assembling the overflow valve. If the installation is not cleaned well enough or if the overflow valve is incorrectly assembled this may lead to sealing defects.

Overflow valve installation:

Do not use the overflow valve body when you are tightening the assembly (this could damage the overflow valve).

Only use the hex nut wrench provided for this purpose.

It is recommended to use a flat gasket, model 5296, to ensure correct sealing.

Do not over tighten or enter the connections too deeply as this may damage the device's seat.

Adjustment

Overflow valves can be supplied with factory setting and sealing, or they can be supplied without a set pressure, but with the required adjustment range. When overflow valves have been set and sealed by the factory, they bear a marking that indicates the set pressure. No set pressure certificate will be supplied.

The set pressure for unsealed overflow valves can be adjusted within the spring's adjustment range limits.

To do this, proceed as described below:

Adjust the set pressure using an Allen key.

Turn clockwise to increase the set pressure and counter-clockwise to decrease the set pressure.

						Flow	/ coef	ficier	it at 1	bar o	v er tl	he set	t pres	sure							
DN		10			15			20			25		32			40			50		
Set pressure range	0.5-2.5	2 - 12	12 - 20	0.5 - 2.5	2 - 12	12 - 20	0.5-2.5	2 - 12	12 - 20	0.5-2.5	2 - 12	12 - 20	0.5 - 2.5	2 - 12	12 - 20	0.5-2.5	2 - 12	12 - 20	0.5-2.5	2 - 12	12 - 20
bar										Α.	ir (Nm3	/h)									
0.5	83	-	-	147	-	-	209	-	-	375	-	-	717	-	-	847	-	-	1376	-	-
1	95	-	-	158	-	-	228	-	-	390	-	-	808	-	-	899	-	-	1546	-	-
1.5	101	-	-	173	-	-	257	-	-	433	-	-	901	-	-	1033	-	-	1734	-	-
2	111	48	-	180	86	-	287	159	-	462	302	-	977	233	-	1104	426	-	1904	788	-
2.5	119	50	-	202	89	-	306	168	-	495	311	-	1031	257	-	1205	447	-	1953	802	-
3	-	51	-	-	95	-	-	188	-	-	322	-	-	272	-	-	481	-	-	821	-
4	-	62	-	-	101	-	-	213	-	-	341	-	-	311	-	-	527	-	-	878	-
5	-	80	-	-	105	-	-	242	-	-	361	-	-	352	-	-	566	-	-	942	-
6	-	90	-	-	111	-	-	250	-	-	380	-	-	397	-	-	597	-	-	994	-
7	-	96	-	-	118	-	-	257	-	-	391	-	-	437	-	-	764	-	-	1050	-
8	-	114	-	-	117	-	-	316	-	-	347	-	-	492	-	-	910	-	-	1123	-
9	-	115	-	-	123	-	-	324	-	-	301	-	-	546	-	-	949	-	-	1187	-
10 11	-	122	-	-	133	-	-	331	-	-	288	-	-	600	-	-	1023	-	-	1280	-
12	-	121	96	-	138	112	-	339 354	221	-	274	305	-	569	594	-	1070	682	-	1358 1480	1237
13	-	-	109	-	-	103	-	-	206	-	-	291	-	-	625	-	1095	758	-	-	1237
14	_	_	116	_	_	94	_	_	166	_	_	282	_	_	656	-	_	834	_	_	1388
15	_	-	120	_	_	85	_	-	140	-	-	269	_	-	687	_	_	911	_	_	1499
16	-	_	122		_	76	_	_	132	_	_	257	_	_	716	_	_	987	_	_	1609
17	-	-	124	_	_	57	_	-	115	_	_	245	_	_	737	_	_	954	_	-	1821
18	-	-	129	-	_	56	-	-	84	-	-	233	-	-	758	-	-	922	-	-	2033
19	-	-	134	_	_	44	-	-	50	-	-	220	-	-	779	-	-	889	-	_	2245
20	-	-	140	-	-	36	-	-	45	-	-	208	-	-	801	-	-	851	-	-	2357

						Flow	/ coef	ficier	nt at 1	bar o	v er tl	ne set	t pres	sure							
DN		10			15		20				25		32			40			50		
Set pressure range	0.5 - 2.5	2 - 12	12 - 20	0.5-2.5	2 - 12	12 - 20	0.5-2.5	2 - 12	12 - 20	0.5 - 2.5	2 - 12	12 - 20	0.5-2.5	2 - 12	12 - 20	0.5-2.5	2 - 12	12 - 20	0.5 - 2.5	2 - 12	12 - 20
bar										Wa	ater (m	3/h)									
0.5	2.7	-	-	4.3	-	-	6.1	-	-	10.8	-	-	16.0	-	-	21.7	-	-	31.6	-	-
1	3.0	-	-	4.6	-	-	6.5	-	-	11.9	-	-	16.7	-	-	23.3	-	-	35.6	-	-
1.5	3.2	-	-	4.8	-	-	6.7	-	-	12.6	-	-	17.5	-	-	24.0	-	-	37.7	-	-
2	3.4	1.6	-	5.0	1.8	-	6.9	3.7	-	13.0	4.2	-	18.1	6.2	-	25.2	6.2	-	40.6	17.9	-
2.5	3.7	1.7	-	5.2	1.8	-	7.3	3.8	-	13.7	4.3	-	18.9	6.2	-	26.1	9.1	-	43.0	19.4	-
3	-	1.9	-	-	1.8	-	-	4.1	-	-	4.3	-	-	6.1	-	-	9.3	-	-	21.1	-
4	-	2.2	-	-	1.7	-	-	4.6	-	-	4.5	-	-	6.1	-	-	9.7	-	-	24.7	-
5	-	2.5	-	-	1.6	-	-	5.1	-	-	4.6	-	-	6.0	-	-	10.3	-	-	28.9	-
6	-	2.8	-	-	1.5	-	-	6.1	-	-	4.7	-	-	5.9	-	-	10.6	-	-	30.1	-
7	-	2.9	-	-	1.5	-	-	6.5	-	-	5.0	-	-	5.8	-	-	11.9	-	-	31.7	-
8	-	3.1	-	-	1.4	-	-	7.1	-	-	5.1	-	-	5.6	-	-	13.1	-	-	34.2	-
9	-	3.2	-	-	1.4	-	-	7.3	-	-	5.3	-	-	5.5	-	-	14.3	-	-	37.4	-
10	-	3.4	-	-	1.4	-	-	8.3	-	-	5.5	-	-	5.3	-	-	15.7	-	-	39.3	-
11 12	-	3.5	1.7	-	1.4	-	-	9.1	-	-	5.8 5.9	-	-	5.2	-	-	17.2	- 10.1	-	42.4	10.0
13	-	3.7	1.7	-	1.3	0.4	-	9.3	2.8	-		2.2	-	5.0	6.8	-	17.6	10.1	-		18.9
14	_	_	1.4	-	-	0.4	-	-	2.4	-	-	1.9	-		6.3	-	-	10.5	-	-	24.1
15	_	_	1.3	-	-	0.5	-	-	1.7	-	-	1.6	-	-	6.1	-	-	10.5	-	-	25.7
16	_		0.8	_	_	0.5	_	_	1.7	_	-	1.3	_	_	6.0	_	_	10.0	_	_	27.6
17	_	_	0.6	_	_	0.5	-	_	1.1	_	-	1.1	-	-	5.8	-	_	11.0	_	-	29.3
18	-	_	0.4	_	_	0.6	_	_	0.9	_	_	1.0	_	_	5.6	_	_	11.3	_	_	31.8
19	-	-	0.2	_	_	0.6	-	_	0.7	_	_	0.8	_	_	5.1	_	_	11.4	_	-	34.6
20	-	-	0.2	_	_	0.6	_	_	0.7	_	-	0.7	_	_	5.0	_	_	11.5	_	_	36.6

						Flow	/ coef	ficier	nt at 1	bar o	v er tl	ne set	pres	sure								
DN	10			15			20				25			32			40			50		
Set pressure range	0.5-2.5	2 - 12	12 - 20	0.5-2.5	2 - 12	12 - 20	0.5-2.5	2 - 12	12 - 20	0.5-2.5	2 - 12	12 - 20	0.5-2.5	2 - 12	12 - 20	0.5-2.5	2-12	12 - 20	0.5 - 2.5	2-12	12 - 20	
bar										St	eam (k	g/h)										
0.5	65	-	-	113	-	-	163	-	-	295	-	-	509	-	-	665			1100			
1	74	-	-	125	-	-	181	-	-	313	-	-	553	-	-	724			1222			
1.5	81	-	-	135	-	-	200	-	-	345	-	-	615	-	-	798			1345			
2	86	40	-	143	73	-	221	126	-	373	218	-	642	194	-	862	311		1451			
2.5	93	45	-	157	79	-	235	141	-	384	244	-	619	218	-	940	349		1535	663		
3	-	43	-	-	80	-	-	156	-	-	258	-	-	223	-		387			698		
4	-	53	-	-	79	-	-	160	-	-	308	-	-	244	-		428			670		
5	-	66	-	-	82	-	-	176	-	-	322	-	-	283	-		455			740		
6	-	75	-	-	88	-	-	200	-	-	326	-	-	323	-		518			859		
7	-	81	-	-	93	-	-	198	-	-	298	-	-	363	-		635			816		
9	_	89	-	-	96	-	-	190	-	-	279	-	-	402	-		645 707			916		
10	_	97	-	-	106	-	-	193	-	-	273	-	-	480	-		770			1015		
11	_	94	_	-	106	_	-	189	-	-	262	_	-	472	-		833			1002		
12	_	101	79	_	105	78	_	204	183	_	282	247	_	406	457		814	570		1179	987	
13	-	-	84	_	_	68	_	_	174	_	-	189	_	-	489			610			1056	
14	-	-	90	_	-	57	-	-	162	-	-	201	-	-	521			650			1125	
15	-	-	95	-	-	54	-	-	123	-	-	213	_	-	552			590			1022	
16	-	-	94	-	-	51	-	-	130	-	-	180	-	-	584			728			1261	
17	-	-	99	-	-	46	-	-	110	-	-	142	-	-	615			768			1140	
18	-	-	96	-	-	32	-	-	87	-	-	150	-	-	576			693			1399	
19	-	-	101	-	-	28	-	-	61	-	-	105	-	-	604			606			1678	
20	-	-	105	-	-	21	-	-	32	-	-	165	-	-	632			634			1537	

Maintenance

The maintenance and removal/reassembly of the overflow valve must be carried out by personnel who are qualified and trained for this type of intervention.

Warning: Before working on the overflow valve, check that the installation has been stopped and that the piping is empty and is not pressurised.

Warning: For usage temperatures above 60°C there is a risk of burns.

Warning: Be careful of hazardous materials - follow supplier usage instructions.

If the device is used as a pressure relief valve, the installation's operating pressure must be at least 5% lower than the valve's reseating pressure. This will mean that once overflow has occurred, the overflow valve will be able to close completely.

After a long period of shut-down, it is important to check the overflow valve is operating correctly.

Standards and compliance

- Connection: BSP female thread in accordance with EN ISO 228-I
- Leakage testing in accordance with the EN 12266
- Complies with European Pressure Equipment Directive (PED) 2014/68/EU (formerly 97/23/EC)