

Vannes à boule

Ball valves

Modèle 58308 Vanne 2 pièces ATEX femelle / femelle GAZ avec platine ISO - Inox 316

1000 lbs / PN63 - Passage intégral - Poignée cadenassable

Caractéristiques

86118 100x

Dimensions: DN8 à DN80 (1/4" à 3") Raccordements: Taraudage GAZ ISO 7-1

Pression: PN63 (1000 lbs)

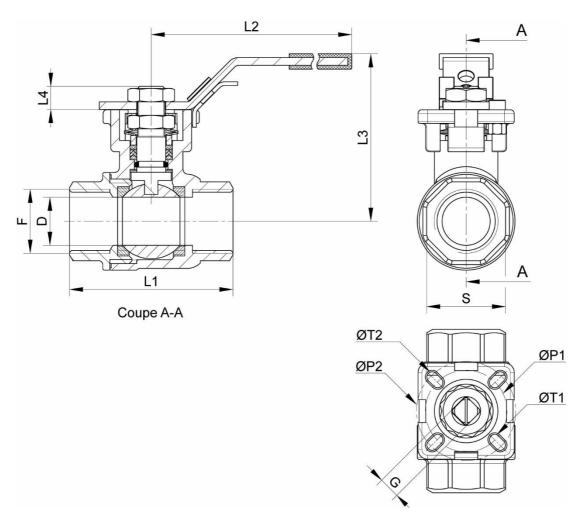
Température : de -29°C à +175°C

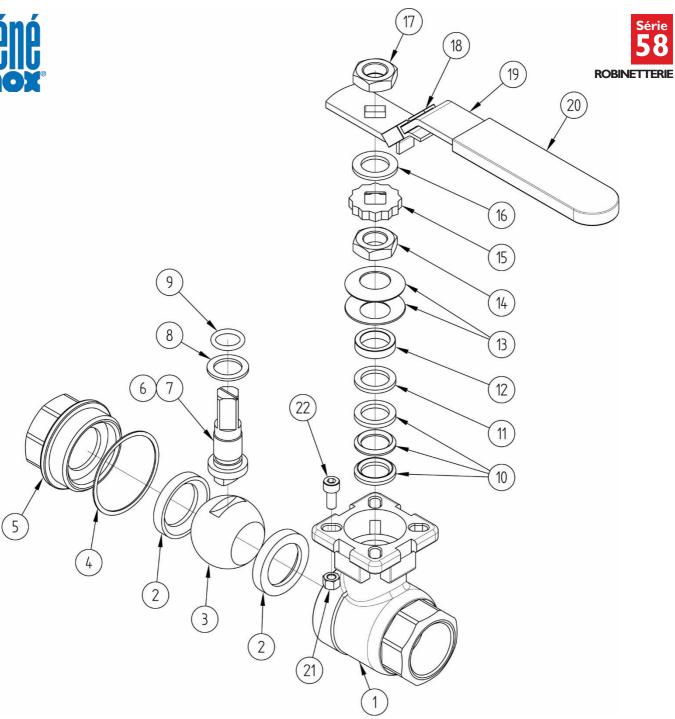
Matière: Inox 316 / CF8M

(pour les pièces inox en contact avec le fluide)

Sièges en TFM 1600 Joints PTFE + FKM

ATEX II 2 GD





DN	DN	D	F	Lt	L2	L3	L4	G	Platine	ØP1	ØP2	ØT1	ØT2	S	Poids	Ditimo
(mm)	(pouces)	(mm)	(pouces)	(mm)	(mm)	(mm)	(mm)	(mm)	ISO	(mm)	(mm)	(mm)	(mm)	(mm)	(kg)	Référence
8	1/4"	10,6	Rp 1/4"	67	147	73	9	9	F03 - F04	36	42	6	6	27	0,58	458308-8
10	3/8"	12,7	Rp 3/8"	67	147	73	9	9	F03 - F04	36	42	6	6	27	0,55	458308-10
15	1/2"	15	Rp 1/2"	67	147	73	9	9	F03 - F04	36	42	6	6	27	0,51	458308-15
20	3/4"	20	Rp 3/4"	70	147	79	9	9	F03 - F05	36	50	6	7	32	0,61	458308-20
25	1"	25	Rp 1"	85	177	88	11	11	F04 - F05	42	50	6	7	41	1,10	458308-25
32	1''1/4	32	Rp 1"1/4	94	177	93	11	11	F04 - F07	42	70	6	9	50	1,42	458308-32
40	1"1/2	38	Rp 1"1/2	105	197	103	14	14	F05 - F07	50	70	7	9	56	2,04	458308-40
50	2"	50	Rp 2"	125	197	110	14	14	F05 - F07	50	70	7	9	70	3,27	458308-50
65	2"1/2	63,5	Rp 2"1/2	155	267	150	17	17	F07 - F10	70	102	9	11	83	6,04	458308-65
80	3"	76	Rp 3"	173	267	159	17	17	F07 - F10	70	102	9	11	102	9,17	458308-80

Repère	Désignation	Matière
1	CORPS	ASTM CF8M
2	SIÈGE	TFM1600
3	BOULE	AISI 316
4	JOINT DE CORPS	PTFE
5	FLASQUE (EMBOUT TARAUDÉ)	ASTM CF8M
6	TIGE DE MANOEUVRE +ANTI STATIQUE	AISI 316
7	RESSORT + BILLE (ANTI-STATIQUE)	AISI 316
8	BAGUE TIGE	PTFE
9	JOINT TORIQUE	FKM
10	GARNITURE (RONDELLE EN V)	PTFE
11	BAGUE	INOX + PTFE

Repère	Désignation	Matière
12	BAGUE ÉPAISSE	AISI 316
13	RONDELLE BELLEVILLE	AISI 301
14	ÉCROU DE TIGE (PRESSE ÉTOUPE)	A194-8
15	STOP ÉCROU	AISI 304
16	RONDELLE PLATE	AISI 304
17	ÉCROU DE POIGNÉE	A194-8
18	DISPOSITIF DE BLOCAGE	AISI 304
19	POIGNÉE	AISI 304
20	REVÊTEMENT DE POIGNÉE	PVC
21	ÉCROU (BUTÉE)	A2-70
22	VIS (BUTÉE)	A2-70

Béné Inox – II Chemin de la Pierre Blanche – 69800 SAINT PRIEST – S.A.S au capital de 240 000 € – SIREN 311 810 287 Tél : 04 78 90 48 22 - Fax : 04 78 90 69 59 - <u>www.bene-inox.com</u> - <u>bene@bene-inox.com</u>

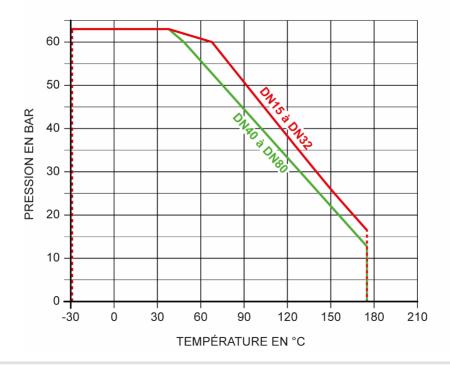
Les informations techniques, illustrations et photographies sont données à titre indicatif sans caractère contractuel. Certaines peuvent varier en fonction des tolérances admises dans la profession et des normes applicables. Les instructions d'utilisation, de montage et de maintenance constituent de simples recommandations. Elles peuvent également varier en fonction des conditions d'utilisation du produit, de l'environnement de montage et des besoins de l'acheteur dont ce dernier est seul responsable de la définition.

- 3 -58308-D V1025

Utilisation

Cette vanne est une vanne d'arrêt : elle doit être totalement ouverte ou totalement fermée. Un défaut d'ouverture ou le fait de laisser une ouverture partielle de la boule pour diminuer le débit peut entraîner un phénomène de cavitation susceptible d'endommager la vanne.

Pour manœuvrer la vanne, soulever le dispositif de blocage 18 pour pouvoir tourner la poignée 19 de 1/4 de tour jusqu'en butée.


Tourner la poignée de 1/4 de tour (90°) en sens horaire pour la fermeture ou en sens anti-horaire pour l'ouverture.

Si la poignée est dans l'alignement de la tuyauterie, la vanne est ouverte. La poignée est cadenassable en position ouverte ou fermée.

Pression et température

La plaque signalétique indique la pression maximale ainsi que les températures minimales et maximales de fonctionnement de la vanne (mais pas d'un éventuel vérin ou servomoteur, voir la plaque correspondante). La température de fonctionnement est comprise entre -29°C et +175°C pour les sièges en TFM1600.

Pour la tenue en pression en fonction de la température, voir la courbe ci-dessous.

Attention aux risques de brûlures pour une température d'utilisation supérieure à 60°C.

Coefficient de débit et perte de charge

	Dimension	DN8	DN10	DN15	DN20	DN25	DN32	DN40	DN50	DN65	DN80
Dime	Dimension	1/4''	3/8''	1/2"	3/4''	1"	1"1/4	1"1/2	2"	2"1/2	3"
	Kv (m³/h)	14	20	26	48	83	147	234	407	675	995

Le coefficient de débit, nommé Kv, définit le débit d'eau traversant un appareil (vanne, clapet...) pour une perte de pression (noté ΔP) de I bar. Le Kv s'exprime mathématiquement :

$$\Delta P = \frac{Q^2}{Kv^2} \quad donc: \quad K_V = \frac{Q}{\sqrt{\Delta P}} \qquad \quad \begin{array}{c} Q \text{ en } m^3/h & \text{Kv en } m^3/h \\ \Delta P \text{ en bar} & \text{Cv en GPM (US)} \end{array} \qquad \quad C_V = 1,16 \text{ x Kv}$$

Fluides

Cette vanne est adaptée pour des fluides non chargés et non coagulables, sous réserve de la compatibilité chimique avec les pièces en contact.

Grâce à sa platine ISO (norme ISO 5211), la vanne est motorisable (montage direct), voir les notices correspondantes.

- Modèle 50050 : vanne avec vérin pneumatique aluminium simple ou double effet

- Modèle 5005 I: vanne avec vérin pneumatique inox simple ou double effet

- Modèle **50053** : vanne avec servomoteur électrique IP65

- Modèles 50057 - 50058 - 50059 : vanne avec servomoteur électrique IP66

- Modèles 50061 - 50062 - 50063 : vanne avec servomoteur électrique IP68

- Modèles 50065 - 50066 - 50067 : vanne avec servomoteur électrique IP68 ATEX

Couples de manœuvre nécessaires à la motorisation d'une vanne

Dimension	-	DN8	DN10	DN15	DN20	DN25	DN32	DN40	DN50	DN65	DN80
Couple de manoeuvre	N.m	5	5	5	6	11	19	26	38	59	101
Caractéristiques	Platine	F03 F04	F03 F04	F03 F04	F03 F05	F04 F05	F04 F07	F05 F07	F05 F07	F07 F10	F07 F10
d'accouplement	Carré	9x9	9x9	9x9	9x9	11x11	11x11	14x14	14x14	17x17	17x17

Couple donné pour de l'eau à 63 bar.

Pour la motorisation il est conseillé de prendre un coefficient de sécurité minimum de +30% pour un vérin pneumatique et +50% pour un actionneur électrique.

Se reporter aux prescriptions décrites dans les fiches techniques des actionneurs correspondant.

Béné Inox – II Chemin de la Pierre Blanche – 69800 SAINT PRIEST – S.A.S au capital de 240 000 € – SIREN 311 810 287 Tél : 04 78 90 48 22 – Fax : 04 78 90 69 59 – www.bene-inox.com – bene@bene-inox.com

Utilisation en zone ATEX

Les vannes manuelles (modèle **58308**) et pneumatiques (modèles **50050** et **50051**) sont utilisables en zone ATEX II 2 GD.

En cas d'ajout de tout autre élément (détection de position, électrodistributeur...), il faut vérifier que cet ajout soit compatible avec une utilisation en zone ATEX.

Les vannes avec servomoteur électrique (modèles 50053, 50057, 50061, etc.) ne sont pas utilisables en zone ATEX.

Seules, les vannes avec servomoteur électrique, modèles **50065**, **50066** et **50067** sont utilisables en zone ATEX II 2 GD.

Instructions de montage et de maintenance

Installation

La vanne peut être utilisée dans n'importe quelle position. S'assurer que l'emplacement prévu soit suffisamment dégagé pour manœuvrer la poignée.

Vérifier que le matériel est propre et exempt de corps étrangers susceptibles de détériorer la vanne.

S'assurer que la tuyauterie soit parfaitement alignée et son supportage suffisamment dimensionné afin que la vanne ne supporte aucune contrainte extérieure. Le supportage doit s'effectuer sur les tubes et non sur la vanne.

Installation d'une vanne taraudée :

Utiliser une clé appropriée sur l'hexagone de l'embout de vanne. Ne pas se servir du corps de vanne ou de la poignée pour effectuer le serrage (risque de détérioration de la vanne). Pour l'étanchéité des raccords filetés, utiliser un produit adapté aux conditions de service (Ex: adhésif anaérobie modèle **5291**, ruban PTFE, etc.).

La vanne doit être démontée et remontée avec la boule en position ouverte.

Nettoyer l'installation en laissant la vanne ouverte pour ne pas avoir d'impuretés entre la boule et le corps. Vérifier le bon fonctionnement de la vanne.

Procéder aux essais de mise en pression de l'installation sans dépasser les caractéristiques de la vanne, et selon les normes en vigueur (ex. EN 12266-1).

Maintenance

Dans des conditions normales d'utilisation, la vanne ne demande pas d'entretien particulier.

Dans le cas d'une vanne qui n'est jamais manœuvrée en fonctionnement normal, il est conseillé d'effectuer régulièrement des manœuvres d'ouverture / fermeture pour s'assurer du bon fonctionnement de la vanne.

Durant l'utilisation (ou à l'installation pendant la phase d'essais), si une fuite apparaît au niveau de la tige de manœuvre 6, resserrer l'écrou de tige 14. Normalement la fuite est stoppée en resserrant l'écrou de 30 à 60°. Ne pas trop serrer l'écrou au risque de diminuer la durée de vie du système. Respecter les couples de serrage (voir tableau A page 8).

Suite à une usure anormale, ou suite au passage d'un produit ayant détérioré la vanne et occasionné une fuite ou une dysfonction, il peut être nécessaire de changer certaines pièces.

Dans ce cas, voir le paragraphe "Montage / Démontage".

Montage / Démontage

La maintenance et les opérations de démontage / remontage d'une vanne doivent être effectuées par du personnel qualifié et formé à ce type d'intervention.

Avant intervention sur la vanne, vérifier que l'installation est arrêtée et la tuyauterie vide et hors pression.

Attention aux risques de brûlures pour une température d'utilisation supérieure à 60°C. Attention aux matières dangereuses : suivre les prescriptions d'utilisation des fournisseurs.

Dévisser le flasque 5 et enlever les bagues en TFM1600 2 et le joint de corps 4.

Mettre la vanne en position fermée pour pouvoir retirer la boule 3. Inspecter l'état de surface de la boule. Si elle est rayée ou abîmée, elle doit être remplacée en même temps que les deux bagues 2.

Si l'étanchéité de la tige doit être refaite, retirer les pièces de la partie supérieure dans l'ordre suivant : écrou de poignée 17, rondelle frein 15 et la poignée 19 dans le cas d'une vanne manuelle (sinon enlever la motorisation), puis l'écrou tige 14 et bague inox 11 + 12.

Pousser la tige de manœuvre 6 vers l'intérieur du corps I pour l'enlever, et retirer la bague PTFE 8 (prendre soin de ne pas rayer la tige).

Oter la garniture PTFE (rondelles en « v ») 10 de son logement (prendre soin de ne pas rayer la surface de ce logement).

Nettoyer et inspecter toutes les pièces. Changer les pièces usagées. Il est fortement recommandé de changer toutes les pièces d'étanchéité de la tige (joints et garnitures PTFE) si elle a été démontée, ainsi que les bagues TFM1600 de la boule.

Pour le remontage, procéder en ordre inverse du démontage.

Tester la vanne (tenue en pression + manœuvres) avant de remettre l'installation en service.

Tableau A	Dimension	DN8	DN10	DN15	DN20	DN25	DN32	DN40	DN50	DN65	DN80
Couple de serrage	N.m	8,0 ~	8,0 ~	8,0 ~	8,0 ~	9,0 ~	9,0 ~	15,8 ~	15,8 ~	20,4 ~	20,4 ~
écrou tige (14)		9,0	9,0	9,0	9,0	11,3	11,3	18,1	18,1	22,6	22,6

Kit de joints

Le kit de joint comporte :

- 2 bagues sièges 2
- I joint de corps 4
- I bague tige 8
- I joint torique 9
- I garniture d'étanchéité 10
- I bague II

(quantité variable en fonction du DN)

DN	DN	Référence
(mm)	(pouces)	neierence
8	1/4"	D5401-8
10	3/8"	D5401-10
15	1/2"	D5401-15
20	3/4"	D5401-20
25	1"	D5401-25
32	1"1/4	D5401-32

DN (mm)	DN (pouces)	Référence
40	1"1/2	D5401-40
50	2"	D5401-50
65	2''1/2	D5401-65
80	3"	D5401-80

Normes et conformités

- Conception selon les normes ASME B16.34 et EN 12516-3
- Raccordement: taraudage cylindrique GAZ suivant la norme ISO 7-1 (Rp)
- Test d'étanchéité suivant la norme EN 12266 / API 598
- DESP conforme à la directive 2014/68/EU
 - à partir du DN8 selon l'annexe I paragraphe 4.3
 - à partir du DN32 selon l'annexe III module H : certificat no. DGR 0036-QS-1045-23
- ATEX groupe II catégorie 2 G D conforme à la directive 2014/34/EU : certificat no. EX9A 082326 0003
 - II 2G Ex h IIC T6...T1 Gb (gaz et vapeurs)
 - II 2D Ex h IIIC T85°C...T450°C Db (poussières combustibles)